File size: 1,588 Bytes
6c8b411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
library_name: transformers
license: llama3.2
base_model: Grogros/dmWM-meta-llama-Llama-3.2-1B-Instruct-ft-HarmData-AlpacaGPT4-OpenWebText-d4-a0.25
tags:
- generated_from_trainer
datasets:
- openwebtext
model-index:
- name: Grogros-dmWM-Llama-3.2-1B-Instruct-HarmData-Al4-OWT-d4-a0.25-learnability_adv
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Grogros-dmWM-Llama-3.2-1B-Instruct-HarmData-Al4-OWT-d4-a0.25-learnability_adv

This model is a fine-tuned version of [Grogros/dmWM-meta-llama-Llama-3.2-1B-Instruct-ft-HarmData-AlpacaGPT4-OpenWebText-d4-a0.25](https://huggingface.co/Grogros/dmWM-meta-llama-Llama-3.2-1B-Instruct-ft-HarmData-AlpacaGPT4-OpenWebText-d4-a0.25) on the openwebtext dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAFACTOR and the args are:
No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2500

### Training results



### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1.post303
- Datasets 3.2.0
- Tokenizers 0.20.4