--- library_name: transformers license: llama3.1 base_model: huihui-ai/Llama-3.1-Tulu-3-8B-abliterated tags: - axolotl - generated_from_trainer datasets: - FourOhFour/RP_Phase model-index: - name: evil8b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml base_model: huihui-ai/Llama-3.1-Tulu-3-8B-abliterated model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: FourOhFour/RP_Phase type: chat_template chat_template: llama3 roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn shuffle_merged_datasets: true default_system_message: dataset_prepared_path: val_set_size: 0.0125 output_dir: ./output/out hub_model_id: jeiku/evil8b hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: wandb_project: evil wandb_entity: wandb_watch: wandb_name: evil wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 2 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.05 fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> ```

# evil8b This model is a fine-tuned version of [huihui-ai/Llama-3.1-Tulu-3-8B-abliterated](https://huggingface.co/huihui-ai/Llama-3.1-Tulu-3-8B-abliterated) on the FourOhFour/RP_Phase dataset. It achieves the following results on the evaluation set: - Loss: 1.0089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5229 | 0.5004 | 131 | 1.0768 | | 2.103 | 1.0012 | 262 | 1.0223 | | 1.3982 | 1.5016 | 393 | 1.0089 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3