chilly-magician's picture
[add]: test parser script
6a7f508
raw
history blame
5.28 kB
import argparse
import json
import os
from typing import Optional, Tuple
from tqdm.auto import tqdm
import torch
from datasets import DatasetDict, load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
def check_base_path(path: str) -> Optional[str]:
if path is not None:
base_path = os.path.basename(path)
if os.path.exists(base_path):
return path
else:
raise Exception(f'Path not found {base_path}')
return path
def parse_args():
DEFAULT_MODEL_ID = 'EmbeddingStudio/query-parser-falcon-7b-instruct'
DEFAULT_DATASET = 'EmbeddingStudio/query-parsing-instructions-falcon'
DEFAULT_SPLIT = 'test'
DEFAULT_INSTRUCTION_FIELD = 'text'
DEFAULT_RESPONSE_DELIMITER = '## Response:\n'
DEFAULT_CATEGORY_DELIMITER = '## Category:'
DEFAULT_OUTPUT_PATH = f'{DEFAULT_MODEL_ID.split("/")[-1]}-test.json'
parser = argparse.ArgumentParser(description='EmbeddingStudio script for testing Zero-Shot Search Query Parsers')
parser.add_argument("--model-id",
help=f"Huggingface model ID (default: {DEFAULT_MODEL_ID})",
default=DEFAULT_MODEL_ID,
type=str,
)
parser.add_argument("--dataset-name",
help=f"Huggingface dataset name which contains instructions (default: {DEFAULT_DATASET})",
default=DEFAULT_DATASET,
type=str,
)
parser.add_argument("--dataset-split",
help=f"Huggingface dataset split name (default: {DEFAULT_SPLIT})",
default=DEFAULT_SPLIT,
type=str,
)
parser.add_argument("--dataset-instructions-field",
help=f"Huggingface dataset field with instructions (default: {DEFAULT_INSTRUCTION_FIELD})",
default=DEFAULT_INSTRUCTION_FIELD,
type=str,
)
parser.add_argument("--instructions-response-delimiter",
help=f"Instruction response delimiter (default: {DEFAULT_RESPONSE_DELIMITER})",
default=DEFAULT_RESPONSE_DELIMITER,
type=str,
)
parser.add_argument("--instructions-category-delimiter",
help=f"Instruction category name delimiter (default: {DEFAULT_CATEGORY_DELIMITER})",
default=DEFAULT_CATEGORY_DELIMITER,
type=str,
)
parser.add_argument("--output",
help=f"JSON file with test results (default: {DEFAULT_OUTPUT_PATH})",
default=DEFAULT_OUTPUT_PATH,
type=check_base_path,
)
args = parser.parse_args()
return args
def load_model(model_id: str) -> Tuple[AutoTokenizer, AutoModelForCausalLM]:
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True,
add_prefix_space=True,
use_fast=False,
)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"": 0})
return tokenizer, model
@torch.no_grad()
def predict(
tokenizer: AutoTokenizer,
model: AutoModelForCausalLM,
dataset: DatasetDict,
index: int,
field_name: str = 'text',
response_delimiter: str = '## Response:\n',
category_delimiter: str = '## Category: '
) -> Tuple[dict, dict, str]:
input_text = dataset[index][field_name].split(response_delimiter)[0] + response_delimiter
input_ids = tokenizer.encode(input_text, return_tensors='pt')
real = json.loads(dataset[index][field_name].split(response_delimiter)[-1])
category = dataset[index][field_name].split(category_delimiter)[-1].split('\n')[0]
# Generating text
output = model.generate(input_ids.to('cuda'),
max_new_tokens=1000,
do_sample=True,
temperature=0.05,
pad_token_id=50256
)
parsed = json.loads(tokenizer.decode(output[0], skip_special_tokens=True).split(response_delimiter)[-1])
return [parsed, real, category]
@torch.no_grad()
def test_model(model_id: str,
dataset_name: str,
split_name: str,
field_name: str,
response_delimiter: str,
category_delimiter: str,
output_path: str,
):
dataset = load_dataset(dataset_name, split=split_name)
tokenizer, model = load_model(model_id)
model.eval()
test_results = []
for index in tqdm(range(len(dataset[split_name]))):
try:
test_results.append(predict(tokenizer, model, dataset[split_name], index, field_name, response_delimiter, category_delimiter))
except Exception as e:
continue
with open(output_path, 'w') as f:
json.dump(test_results)
if __name__ == '__main__':
args = parse_args()
test_model(
args.model_id,
args.dataset_name,
args.dataset_split,
args.dataset_instructions_field,
args.instructions_response_delimiter,
args.instructions_category_delimiter,
args.output
)