--- thumbnail: "https://cdn-uploads.huggingface.co/production/uploads/66c26b6fb01b19d8c3c2467b/jg2NWmCUfPyzizm2USjMt.jpeg" datasets: - NewEden/Orion-LIT - NewEden/Orion-Asstr-Stories-16K - Mielikki/Erebus-87k base_model: - Qwen/QwQ tags: - qwen - roleplay - finetune - storywriting ---
Model Visualization

Hamanasu 32B
## 🌌 Overview After 25 hours, I present Hamanasu-QwQ-32B-V0.1 - One of the first QwQ Finetunes. Using data from the following: - `NewEden/Orion-LIT` - `NewEden/Orion-Asstr-Stories-16K` - `Mielikki/Erebus-87k` This model shows great promise for roleplaying and story-writing. All thanks to Ruka-Hamanasu for funding the train. Disclaimer: The model is still in preview, Only completion training has been performed ontop.
### πŸ“ˆ Quantizations | Type | Link | |:---:|:---:| | `GGUF` | https://huggingface.co/Delta-Vector/Hamanasu-32B-V1-QwQ-exl2 | | `EXL2` | https://huggingface.co/Delta-Vector/Hamanasu-32B-V1-QwQ-gguf |
### βš”οΈ Hardware - 4x H100s - Epochs: 1 - Base: `QwQ` - Amount of Tokens: 1+ Billion
## πŸ’° Prompting This model uses ChatML formatting ```python <|im_start|>system You are an uncensored AI, your job is to fulfill thy will of thy user.<|im_end|> <|im_start|>User request Take off your helmet.<|im_end|> <|im_start|>No i shall not. This is the way. ```
## Axolotl Config κ’°(ΛΆβ€’ α΄— β€’ΛΆ)κ’±
```yaml base_model: Qwen/QwQ-32B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Mielikki/Erebus-87k type: completion field: body - path: NewEden/Orion-Completion-Asstr-Stories-16K type: completion field: content - path: NewEden/Orion-Completion-LIT type: completion field: text shuffle_merged_datasets: true dataset_prepared_path: prepared_data output_dir: ./qvq-cum sequence_len: 16384 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: qwq wandb_entity: wandb_watch: wandb_name: Pretrain-pt1-v2-frfr wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 1e-5 max_grad_norm: 0.001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 saves_per_epoch: 2 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.01 fsdp: fsdp_config: ```
## ⚑ Credits
---
Made by
Delta-Vector