File size: 2,252 Bytes
381d0c3
19fb487
381d0c3
19fb487
 
 
 
 
 
381d0c3
19fb487
381d0c3
19fb487
 
381d0c3
19fb487
381d0c3
19fb487
381d0c3
19fb487
381d0c3
19fb487
381d0c3
19fb487
381d0c3
eda8b42
381d0c3
19fb487
381d0c3
19fb487
381d0c3
19fb487
 
 
 
381d0c3
19fb487
381d0c3
19fb487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381d0c3
19fb487
381d0c3
19fb487
381d0c3
19fb487
 
381d0c3
19fb487
381d0c3
19fb487
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
library_name: transformers
tags:
- bittensor
- decentralization
- subnet 9
datasets:
- tiiuae/falcon-refinedweb
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/655a0bdf3ff5ba1b1b1c01b7/y1dKBZh8UhII6wtbs5boj.png" alt="drawing" width="512"/>

# 🚀 **BTLM-7B v0.2**
BTLM (Bittensor Language Model) is a collection of pretrained generative text models. This is the repository for the 7B pretrained model, optimized for dialogue use cases and converted for the HF中国镜像站 Transformers format.

### Model Details

Bittensor's decentralized subnet 9 facilitated the development and release of the first version of the BTLM-7B model. This initial release comprises a sophisticated large language model designed for a variety of applications.In creating this model, significant effort was made to ensure its effectiveness and safety, setting a new standard in the decentralized open-source AI community.

⛔ **This is a pretrained model, which should be further finetuned for most usecases.** 

**Training subnetwork :** 9

**Checkpoint :** 06-06-2024

[**Subnet 9 Network Leaderboard**](https://huggingface.co/spaces/macrocosm-os/pretraining-leaderboard)

[**Top Bittensor Model Checkpoint**](https://huggingface.co/jw-hf-test/jw2)

### Inference

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "CortexLM/btlm-7b-base-v0.2"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
)
sequences = pipeline(
   "Tell me about decentralization.",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

### Benchmark

| Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
| --- | --- | --- | --- | --- | --- | --- |

[LM Evaluation Harness Repository](https://github.com/EleutherAI/lm-evaluation-harness)

## License
BTLM-7B is licensed under the [MIT License](https://opensource.org/license/mit), a permissive license that allows for reuse with virtually no restrictions.