File size: 2,335 Bytes
eaf7a49 21941f4 a62216a 21941f4 eb415f3 b7c8ce1 eaf7a49 4df750f 1281eae 656fc4b 8c6e57e eaf7a49 21941f4 eaf7a49 21941f4 eaf7a49 21941f4 eaf7a49 4e12b24 efe4033 28a9db4 eaf7a49 876db86 eaf7a49 28a9db4 eaf7a49 21941f4 eaf7a49 21941f4 eaf7a49 28a9db4 eaf7a49 21941f4 eaf7a49 21941f4 eaf7a49 21941f4 eaf7a49 21941f4 eaf7a49 21941f4 eaf7a49 21941f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
library_name: transformers
tags:
- bittensor
- decentralization
- subnet 9
datasets:
- tiiuae/falcon-refinedweb
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/655a0bdf3ff5ba1b1b1c01b7/y1dKBZh8UhII6wtbs5boj.png" alt="drawing" width="512"/>
# 🚀 **BTLM-7B v0.1**
BTLM (Bittensor Language Model) is a collection of pretrained generative text models. This is the repository for the 7B pretrained model, optimized for dialogue use cases and converted for the HF中国镜像站 Transformers format.
### Model Details
Bittensor's decentralized subnet 9 facilitated the development and release of the first version of the BTLM-7B model. This initial release comprises a sophisticated large language model designed for a variety of applications.In creating this model, significant effort was made to ensure its effectiveness and safety, setting a new standard in the decentralized open-source AI community.
⛔ **This is a pretrained model, which should be further finetuned for most usecases.**
**Training subnetwork :** 9
**Checkpoint :** 03-05-2024
[**Subnet 9 Network Leaderboard**](https://huggingface.co/spaces/macrocosm-os/pretraining-leaderboard)
[**Top Bittensor Model Checkpoint**](https://huggingface.co/tensorplex-labs/pretraining-sn9-7B-1)
### Inference
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "CortexLM/btlm-7b-base-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
)
sequences = pipeline(
"Tell me about decentralization.",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
### Benchmark
| Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
| --- | --- | --- | --- | --- | --- | --- |
| 43.32 | 45.65 | 58.29 | 44.26 | 30.45 | 70.88 | 10.39 |
[LM Evaluation Harness Repository](https://github.com/EleutherAI/lm-evaluation-harness)
## License
BTLM-7B is licensed under the [MIT License](https://opensource.org/license/mit), a permissive license that allows for reuse with virtually no restrictions. |