Brigitte Tousignant

BrigitteTousi

AI & ML interests

None yet

Recent Activity

reacted to ginipick's post with 🔥 about 2 hours ago
🌐 GraphMind: Phi-3 Instruct Graph Explorer ✨ Extract and visualize knowledge graphs from any text in multiple languages! GraphMind is a powerful tool that leverages the capabilities of Phi-3 to transform unstructured text into structured knowledge graphs, helping you understand complex relationships within any content. https://huggingface.co/spaces/ginigen/Graph-Mind 🚀 Key Features Multi-language Support 🌍: Process text in English, Korean, and many other languages Instant Visualization 🧩: See extracted entities and relationships in an interactive graph Entity Recognition 🏷️: Automatically identifies and categorizes named entities Optimized Performance ⚡: Uses caching to deliver faster results for common examples Intuitive Interface 👆: Simple design makes complex graph extraction accessible to everyone 💡 Use Cases Content Analysis: Extract key entities and relationships from articles or documents Research Assistance: Quickly visualize connections between concepts in research papers Educational Tool: Help students understand the structure of complex texts Multilingual Processing: Extract knowledge from content in various languages 🔧 How It Works Enter any text in the input field Select a model from the dropdown Click "Extract & Visualize" Explore the interactive knowledge graph and entity recognition results GraphMind bridges the gap between raw text and structured knowledge, making it easier to identify patterns, extract insights, and understand relationships within any content. Try it now and transform how you interact with textual information! #NLP #KnowledgeGraph #TextAnalysis #Visualization #Phi3 #MultilingualAI
replied to burtenshaw's post about 2 hours ago
everybody and their dog is fine-tuning Gemma 3 today, so I thought I'd do a longer post on the tips and sharp edges I find. let's go! 1. has to be install everything form main and nightly. this is what I'm working with to get unsloth and TRL running ```txt git+https://github.com/huggingface/transformers@main git+https://github.com/huggingface/trl.git@main bitsandbytes peft ``` plus this with `--no-deps` ```txt git+https://github.com/unslothai/unsloth-zoo.git@nightly git+https://github.com/unslothai/unsloth.git@nightly ``` 2. will brown's code to turn GSM8k into a reasoning dataset is a nice toy experiment https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb 3. with a learning rate of 5e-6 rewards and loss stayed flat for the first 100 or so steps. 4. so far none of my runs have undermined the outputs after 1 epoch. therefore, I'm mainly experimenting with bigger LoRA adapters. ```python from trl import GRPOConfig training_args = GRPOConfig( learning_rate = 5e-6, adam_beta1 = 0.9, adam_beta2 = 0.99, weight_decay = 0.1, warmup_ratio = 0.1, lr_scheduler_type = "cosine", optim = "adamw_8bit", logging_steps = 1, per_device_train_batch_size = 2, gradient_accumulation_steps = 1, num_generations = 2, max_prompt_length = 256, max_completion_length = 1024 - 256, num_train_epochs = 1, max_steps = 250, save_steps = 250, max_grad_norm = 0.1, report_to = "none", ) ``` 5. vision fine-tuning isn't available in TRL's GRPOTrainer, so stick to text datasets. but no need to load the model differently in transformers or Unsloth ```python from transformers import AutoModelForImageTextToText model = AutoModelForImageTextToText.from_pretrained("google/gemma-3-4b-it) ``` if you want an introduction to GRPO, check out the reasoning course, it walks you through the algorithm, theory, and implementation in a smooth way. https://huggingface.co/reasoning-course
reacted to burtenshaw's post with 🔥 about 2 hours ago
everybody and their dog is fine-tuning Gemma 3 today, so I thought I'd do a longer post on the tips and sharp edges I find. let's go! 1. has to be install everything form main and nightly. this is what I'm working with to get unsloth and TRL running ```txt git+https://github.com/huggingface/transformers@main git+https://github.com/huggingface/trl.git@main bitsandbytes peft ``` plus this with `--no-deps` ```txt git+https://github.com/unslothai/unsloth-zoo.git@nightly git+https://github.com/unslothai/unsloth.git@nightly ``` 2. will brown's code to turn GSM8k into a reasoning dataset is a nice toy experiment https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb 3. with a learning rate of 5e-6 rewards and loss stayed flat for the first 100 or so steps. 4. so far none of my runs have undermined the outputs after 1 epoch. therefore, I'm mainly experimenting with bigger LoRA adapters. ```python from trl import GRPOConfig training_args = GRPOConfig( learning_rate = 5e-6, adam_beta1 = 0.9, adam_beta2 = 0.99, weight_decay = 0.1, warmup_ratio = 0.1, lr_scheduler_type = "cosine", optim = "adamw_8bit", logging_steps = 1, per_device_train_batch_size = 2, gradient_accumulation_steps = 1, num_generations = 2, max_prompt_length = 256, max_completion_length = 1024 - 256, num_train_epochs = 1, max_steps = 250, save_steps = 250, max_grad_norm = 0.1, report_to = "none", ) ``` 5. vision fine-tuning isn't available in TRL's GRPOTrainer, so stick to text datasets. but no need to load the model differently in transformers or Unsloth ```python from transformers import AutoModelForImageTextToText model = AutoModelForImageTextToText.from_pretrained("google/gemma-3-4b-it) ``` if you want an introduction to GRPO, check out the reasoning course, it walks you through the algorithm, theory, and implementation in a smooth way. https://huggingface.co/reasoning-course
View all activity

Organizations

HF中国镜像站's profile picture Society & Ethics's profile picture HuggingFaceM4's profile picture Open-Source AI Meetup's profile picture BigCode's profile picture HF中国镜像站 OSS Metrics's profile picture IBM-NASA Prithvi Models Family's profile picture HF中国镜像站 TB Research's profile picture Wikimedia Movement's profile picture LeRobot's profile picture Women on HF中国镜像站's profile picture Journalists on HF中国镜像站's profile picture Social Post Explorers's profile picture Dev Mode Explorers's profile picture HF中国镜像站 Science's profile picture Coordination Nationale pour l'IA's profile picture open/ acc's profile picture Bluesky Community's profile picture Sandbox's profile picture Open R1's profile picture

Posts 4

Articles 3

Article
294

Open-R1: Update #1

models

None public yet

datasets

None public yet