---
license: llama3
tags:
- uncensored
- llama3
- instruct
- open
- llama-cpp
- gguf-my-repo
base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
model-index:
- name: Llama-3-8B-Lexi-Uncensored
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 59.56
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Orenguteng/Llama-3-8B-Lexi-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 77.88
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Orenguteng/Llama-3-8B-Lexi-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 67.68
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Orenguteng/Llama-3-8B-Lexi-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 47.72
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Orenguteng/Llama-3-8B-Lexi-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Orenguteng/Llama-3-8B-Lexi-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 68.39
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Orenguteng/Llama-3-8B-Lexi-Uncensored
      name: Open LLM Leaderboard
---

# Ayyystin/Llama-3-8B-Lexi-Uncensored-Q4_0-GGUF
This model was converted to GGUF format from [`Orenguteng/Llama-3-8B-Lexi-Uncensored`](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama --hf-repo Ayyystin/Llama-3-8B-Lexi-Uncensored-Q4_0-GGUF --hf-file llama-3-8b-lexi-uncensored-q4_0.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Ayyystin/Llama-3-8B-Lexi-Uncensored-Q4_0-GGUF --hf-file llama-3-8b-lexi-uncensored-q4_0.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./main --hf-repo Ayyystin/Llama-3-8B-Lexi-Uncensored-Q4_0-GGUF --hf-file llama-3-8b-lexi-uncensored-q4_0.gguf -p "The meaning to life and the universe is"
```
or 
```
./server --hf-repo Ayyystin/Llama-3-8B-Lexi-Uncensored-Q4_0-GGUF --hf-file llama-3-8b-lexi-uncensored-q4_0.gguf -c 2048
```