--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.3 tags: - axolotl - generated_from_trainer datasets: - AiAF/Codename-75567-Pretrainin.jsonl model-index: - name: Pretrained-QLoRA-Codename-75567-V1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.3 # optionally might have model_type or tokenizer_type model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: AiAF/Pretrained-QLoRA-Codename-75567-V1 load_in_8bit: false load_in_4bit: true strict: false datasets: - path: AiAF/Codename-75567-Pretrainin.jsonl type: completion dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/qlora-out save_total_limit: 10 adapter: qlora lora_model_dir: lora_r: 256 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj sequence_len: 512 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: "LLM-Pretraining" wandb_watch: "all" wandb_name: "QLoRA-Codename-75567-V1" wandb_log_model: "false" wandb_run_id: "QLoRA-Codename-75567-V1" gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 10 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 1 evals_per_epoch: 5 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Pretrained-QLoRA-Codename-75567-V1 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the AiAF/Codename-75567-Pretrainin.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 1.6938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8916 | 0.3333 | 1 | 1.8880 | | 2.017 | 0.6667 | 2 | 1.8847 | | 1.9119 | 1.0 | 3 | 1.8795 | | 1.9716 | 1.3333 | 4 | 1.8711 | | 1.8532 | 1.6667 | 5 | 1.8601 | | 1.9759 | 2.0 | 6 | 1.8488 | | 1.856 | 2.3333 | 7 | 1.8357 | | 1.8404 | 2.6667 | 8 | 1.8241 | | 1.976 | 3.0 | 9 | 1.8131 | | 1.8504 | 3.3333 | 10 | 1.8012 | | 1.8574 | 3.6667 | 11 | 1.7860 | | 1.8194 | 4.0 | 12 | 1.7749 | | 1.8022 | 4.3333 | 13 | 1.7646 | | 1.7632 | 4.6667 | 14 | 1.7525 | | 1.8326 | 5.0 | 15 | 1.7440 | | 1.7696 | 5.3333 | 16 | 1.7325 | | 1.8039 | 5.6667 | 17 | 1.7257 | | 1.7019 | 6.0 | 18 | 1.7164 | | 1.7878 | 6.3333 | 19 | 1.7132 | | 1.718 | 6.6667 | 20 | 1.7093 | | 1.6994 | 7.0 | 21 | 1.7049 | | 1.785 | 7.3333 | 22 | 1.6996 | | 1.6659 | 7.6667 | 23 | 1.6977 | | 1.7241 | 8.0 | 24 | 1.6970 | | 1.7397 | 8.3333 | 25 | 1.6952 | | 1.6894 | 8.6667 | 26 | 1.6934 | | 1.723 | 9.0 | 27 | 1.6932 | | 1.7999 | 9.3333 | 28 | 1.6927 | | 1.6715 | 9.6667 | 29 | 1.6941 | | 1.6696 | 10.0 | 30 | 1.6938 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0