--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - axolotl - generated_from_trainer datasets: - AiAF/Codename-75567-Pretrainin.jsonl model-index: - name: Pretrained-Codename-75567-V1 results: [] pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: mistralai/Mistral-7B-v0.1 # optionally might have model_type or tokenizer_type model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: AiAF/Pretrained-Codename-75567-V1 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: AiAF/Codename-75567-Pretrainin.jsonl type: completion dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/out sequence_len: 512 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: "LLM-Pretraining" wandb_entity: wandb_watch: "all" wandb_name: "Codename-75567-V1" wandb_log_model: "false" gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 1 evals_per_epoch: 5 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Pretrained-Codename-75567-V1 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the AiAF/Codename-75567-Pretrainin.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 1.5809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7902 | 0.3333 | 1 | 1.7724 | | 1.8972 | 0.6667 | 2 | 1.6288 | | 1.6898 | 1.0 | 3 | 1.5141 | | 1.3171 | 1.3333 | 4 | 1.5028 | | 1.1106 | 1.6667 | 5 | 1.5158 | | 1.149 | 2.0 | 6 | 1.5504 | | 0.8633 | 2.3333 | 7 | 1.5803 | | 0.767 | 2.6667 | 8 | 1.5793 | | 0.7649 | 3.0 | 9 | 1.5767 | | 0.6748 | 3.3333 | 10 | 1.5816 | | 0.6898 | 3.6667 | 11 | 1.5816 | | 0.6616 | 4.0 | 12 | 1.5809 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0