--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer datasets: - pretraining.jsonl - AiAF/SCPWiki-Archive-02-March-2025-Datasets model-index: - name: Pretrained-SCP-1B-QLoRA results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: meta-llama/Llama-3.2-1B-Instruct # Automatically upload checkpoint and final model to HF hub_model_id: AiAF/Pretrained-SCP-1B-QLoRA load_in_8bit: false load_in_4bit: true strict: false datasets: - path: pretraining.jsonl type: completion dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./outputs/qlora-out/Pretrained-SCP-1B-QLoRA adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "LLM-Pretraining" wandb_entity: wandb_watch: "all" wandb_name: "Pretrained-SCP-7B-Instruct" wandb_log_model: "false" gradient_accumulation_steps: 3 micro_batch_size: 10 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 50 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 10 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>" ```

# Pretrained-SCP-1B-QLoRA This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the pretraining.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 2.2062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 30 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0841 | 0.0020 | 1 | 3.0001 | | 2.8276 | 0.0215 | 11 | 2.8296 | | 2.3977 | 0.0431 | 22 | 2.5255 | | 2.2856 | 0.0646 | 33 | 2.4384 | | 2.3735 | 0.0862 | 44 | 2.4082 | | 2.3645 | 0.1077 | 55 | 2.3861 | | 2.1425 | 0.1292 | 66 | 2.3694 | | 2.1541 | 0.1508 | 77 | 2.3545 | | 2.2848 | 0.1723 | 88 | 2.3410 | | 2.2334 | 0.1939 | 99 | 2.3310 | | 2.1278 | 0.2154 | 110 | 2.3213 | | 2.159 | 0.2369 | 121 | 2.3112 | | 2.1407 | 0.2585 | 132 | 2.3006 | | 1.9851 | 0.2800 | 143 | 2.2915 | | 2.0319 | 0.3016 | 154 | 2.2839 | | 2.2373 | 0.3231 | 165 | 2.2755 | | 2.1488 | 0.3446 | 176 | 2.2684 | | 2.0218 | 0.3662 | 187 | 2.2612 | | 1.9256 | 0.3877 | 198 | 2.2552 | | 2.0179 | 0.4093 | 209 | 2.2486 | | 2.0768 | 0.4308 | 220 | 2.2448 | | 2.1068 | 0.4523 | 231 | 2.2408 | | 2.1343 | 0.4739 | 242 | 2.2356 | | 2.2212 | 0.4954 | 253 | 2.2342 | | 2.0442 | 0.5170 | 264 | 2.2302 | | 2.0805 | 0.5385 | 275 | 2.2256 | | 1.9695 | 0.5601 | 286 | 2.2230 | | 1.8559 | 0.5816 | 297 | 2.2206 | | 2.0997 | 0.6031 | 308 | 2.2185 | | 2.0168 | 0.6247 | 319 | 2.2164 | | 1.9304 | 0.6462 | 330 | 2.2148 | | 1.9313 | 0.6678 | 341 | 2.2132 | | 2.1708 | 0.6893 | 352 | 2.2119 | | 2.0596 | 0.7108 | 363 | 2.2109 | | 2.1944 | 0.7324 | 374 | 2.2099 | | 2.0098 | 0.7539 | 385 | 2.2094 | | 2.0344 | 0.7755 | 396 | 2.2087 | | 2.1658 | 0.7970 | 407 | 2.2080 | | 2.1188 | 0.8185 | 418 | 2.2078 | | 1.879 | 0.8401 | 429 | 2.2072 | | 1.9652 | 0.8616 | 440 | 2.2068 | | 2.0429 | 0.8832 | 451 | 2.2066 | | 2.3038 | 0.9047 | 462 | 2.2064 | | 2.153 | 0.9262 | 473 | 2.2063 | | 2.0543 | 0.9478 | 484 | 2.2062 | | 2.0093 | 0.9693 | 495 | 2.2062 | | 2.2437 | 0.9909 | 506 | 2.2062 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0