AiAF commited on
Commit
0251def
·
verified ·
1 Parent(s): e838f24

End of training

Browse files
Files changed (1) hide show
  1. README.md +189 -192
README.md CHANGED
@@ -1,202 +1,199 @@
1
  ---
2
- base_model: meta-llama/Llama-3.2-1B-Instruct
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
102
 
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.14.0
 
 
 
 
 
1
  ---
 
2
  library_name: peft
3
+ license: llama3.2
4
+ base_model: meta-llama/Llama-3.2-1B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - pretraining.jsonl
10
+ model-index:
11
+ - name: Pretrained-SCP-1B-QLoRA
12
+ results: []
13
  ---
14
 
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
 
21
+ axolotl version: `0.8.0.dev0`
22
+ ```yaml
23
+ base_model: meta-llama/Llama-3.2-1B-Instruct
24
+ # Automatically upload checkpoint and final model to HF
25
+ hub_model_id: AiAF/Pretrained-SCP-1B-QLoRA
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: true
29
+ strict: false
30
+
31
+ datasets:
32
+ - path: pretraining.jsonl
33
+ type: completion
34
+ dataset_prepared_path: last_run_prepared
35
+ val_set_size: 0.1
36
+ output_dir: ./outputs/qlora-out/Pretrained-SCP-1B-QLoRA
37
+
38
+ adapter: qlora
39
+ lora_model_dir:
40
+
41
+ sequence_len: 2048
42
+ sample_packing: true
43
+ eval_sample_packing: true
44
+ pad_to_sequence_len: true
45
+
46
+ lora_r: 32
47
+ lora_alpha: 16
48
+ lora_dropout: 0.05
49
+ lora_fan_in_fan_out:
50
+ lora_target_modules:
51
+ - gate_proj
52
+ - down_proj
53
+ - up_proj
54
+ - q_proj
55
+ - v_proj
56
+ - k_proj
57
+ - o_proj
58
+
59
+ wandb_project: "LLM-Pretraining"
60
+ wandb_entity:
61
+ wandb_watch: "all"
62
+ wandb_name: "Pretrained-SCP-7B-Instruct"
63
+ wandb_log_model: "false"
64
+
65
+ gradient_accumulation_steps: 3
66
+ micro_batch_size: 10
67
+ num_epochs: 1
68
+ optimizer: adamw_bnb_8bit
69
+ lr_scheduler: cosine
70
+ learning_rate: 0.0002
71
+
72
+ train_on_inputs: false
73
+ group_by_length: false
74
+ bf16: auto
75
+ fp16:
76
+ tf32: false
77
+
78
+ gradient_checkpointing: true
79
+ early_stopping_patience:
80
+ resume_from_checkpoint:
81
+ local_rank:
82
+ logging_steps: 1
83
+ xformers_attention:
84
+ flash_attention: true
85
+
86
+ loss_watchdog_threshold: 5.0
87
+ loss_watchdog_patience: 3
88
+
89
+ warmup_steps: 10
90
+ evals_per_epoch: 50
91
+ eval_table_size:
92
+ eval_max_new_tokens: 128
93
+ saves_per_epoch: 10
94
+ debug:
95
+ deepspeed:
96
+ weight_decay: 0.0
97
+ fsdp:
98
+ fsdp_config:
99
+ special_tokens:
100
+ pad_token: "<|end_of_text|>"
101
+
102
+ ```
103
+
104
+ </details><br>
105
+
106
+ # Pretrained-SCP-1B-QLoRA
107
+
108
+ This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the pretraining.jsonl dataset.
109
+ It achieves the following results on the evaluation set:
110
+ - Loss: 2.2062
111
+
112
+ ## Model description
113
+
114
+ More information needed
115
+
116
+ ## Intended uses & limitations
117
+
118
+ More information needed
119
+
120
+ ## Training and evaluation data
121
+
122
+ More information needed
123
+
124
+ ## Training procedure
125
+
126
+ ### Training hyperparameters
127
+
128
+ The following hyperparameters were used during training:
129
+ - learning_rate: 0.0002
130
+ - train_batch_size: 10
131
+ - eval_batch_size: 10
132
+ - seed: 42
133
+ - gradient_accumulation_steps: 3
134
+ - total_train_batch_size: 30
135
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
136
+ - lr_scheduler_type: cosine
137
+ - lr_scheduler_warmup_steps: 10
138
+ - num_epochs: 1.0
139
+
140
+ ### Training results
141
+
142
+ | Training Loss | Epoch | Step | Validation Loss |
143
+ |:-------------:|:------:|:----:|:---------------:|
144
+ | 3.0841 | 0.0020 | 1 | 3.0001 |
145
+ | 2.8276 | 0.0215 | 11 | 2.8296 |
146
+ | 2.3977 | 0.0431 | 22 | 2.5255 |
147
+ | 2.2856 | 0.0646 | 33 | 2.4384 |
148
+ | 2.3735 | 0.0862 | 44 | 2.4082 |
149
+ | 2.3645 | 0.1077 | 55 | 2.3861 |
150
+ | 2.1425 | 0.1292 | 66 | 2.3694 |
151
+ | 2.1541 | 0.1508 | 77 | 2.3545 |
152
+ | 2.2848 | 0.1723 | 88 | 2.3410 |
153
+ | 2.2334 | 0.1939 | 99 | 2.3310 |
154
+ | 2.1278 | 0.2154 | 110 | 2.3213 |
155
+ | 2.159 | 0.2369 | 121 | 2.3112 |
156
+ | 2.1407 | 0.2585 | 132 | 2.3006 |
157
+ | 1.9851 | 0.2800 | 143 | 2.2915 |
158
+ | 2.0319 | 0.3016 | 154 | 2.2839 |
159
+ | 2.2373 | 0.3231 | 165 | 2.2755 |
160
+ | 2.1488 | 0.3446 | 176 | 2.2684 |
161
+ | 2.0218 | 0.3662 | 187 | 2.2612 |
162
+ | 1.9256 | 0.3877 | 198 | 2.2552 |
163
+ | 2.0179 | 0.4093 | 209 | 2.2486 |
164
+ | 2.0768 | 0.4308 | 220 | 2.2448 |
165
+ | 2.1068 | 0.4523 | 231 | 2.2408 |
166
+ | 2.1343 | 0.4739 | 242 | 2.2356 |
167
+ | 2.2212 | 0.4954 | 253 | 2.2342 |
168
+ | 2.0442 | 0.5170 | 264 | 2.2302 |
169
+ | 2.0805 | 0.5385 | 275 | 2.2256 |
170
+ | 1.9695 | 0.5601 | 286 | 2.2230 |
171
+ | 1.8559 | 0.5816 | 297 | 2.2206 |
172
+ | 2.0997 | 0.6031 | 308 | 2.2185 |
173
+ | 2.0168 | 0.6247 | 319 | 2.2164 |
174
+ | 1.9304 | 0.6462 | 330 | 2.2148 |
175
+ | 1.9313 | 0.6678 | 341 | 2.2132 |
176
+ | 2.1708 | 0.6893 | 352 | 2.2119 |
177
+ | 2.0596 | 0.7108 | 363 | 2.2109 |
178
+ | 2.1944 | 0.7324 | 374 | 2.2099 |
179
+ | 2.0098 | 0.7539 | 385 | 2.2094 |
180
+ | 2.0344 | 0.7755 | 396 | 2.2087 |
181
+ | 2.1658 | 0.7970 | 407 | 2.2080 |
182
+ | 2.1188 | 0.8185 | 418 | 2.2078 |
183
+ | 1.879 | 0.8401 | 429 | 2.2072 |
184
+ | 1.9652 | 0.8616 | 440 | 2.2068 |
185
+ | 2.0429 | 0.8832 | 451 | 2.2066 |
186
+ | 2.3038 | 0.9047 | 462 | 2.2064 |
187
+ | 2.153 | 0.9262 | 473 | 2.2063 |
188
+ | 2.0543 | 0.9478 | 484 | 2.2062 |
189
+ | 2.0093 | 0.9693 | 495 | 2.2062 |
190
+ | 2.2437 | 0.9909 | 506 | 2.2062 |
191
 
 
192
 
 
193
  ### Framework versions
194
 
195
+ - PEFT 0.14.0
196
+ - Transformers 4.49.0
197
+ - Pytorch 2.5.1+cu124
198
+ - Datasets 3.2.0
199
+ - Tokenizers 0.21.0